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A mathematical framework is developed to describe tilted perovskites using a

tensor description of octahedral deformations. The continuity of octahedral tilts

through the crystal is described using an operator which relates the

deformations of adjacent octahedra; examination of the properties of this

operator upon application of symmetry elements allows the space group of tilted

perovskites to be obtained. It is shown that the condition of octahedral

continuity across a planar defect such as an anti-phase boundary or domain wall

necessarily leads to different octahedral tilting at the defect, and a method is

given to predict the local tilt system which will occur in any given case. Planar

boundaries in the rhombohedral R3c a�a�a� tilt system are considered as an

example.

1. Introduction

Perovskite oxides, of the chemical formula ABO3, have been

of continuing interest for crystallographers (Lines & Glass,

1979; Glazer, 1972, 1975; O’Keeffe & Hyde, 1977) as well as

being technologically important materials, with perovskite

compounds exhibiting ferroelectricity, piezoelectricity, giant

magnetoresistance and other effects (Lines & Glass, 1979).

The prototype perovskite structure is cubic, usually repre-

sented as shown in Fig. 1, with A cations at the corners of the

unit cell, a B cation at the centre and oxygen anions at the

face-centring positions, forming an octahedral cage for the B

cation. Typical ABO3 perovskite compounds have the proto-

type structure at high temperature, while at room temperature

the small distortions of the structure and displacements of the

atoms within the unit cell are responsible for many of their

interesting properties.

In some materials, such as PbTiO3, the distortions which

occur upon cooling from the paraelectric cubic phase can be

described relatively simply, i.e. by a deformation of the unit

cell in combination with displacement of the B cation from its

nominal site (Damjanovic, 1998). Others have more complex

deformation patterns which are traditionally described by

considering ‘tilting’ of the oxygen octahedra, displacements of

the cations and further distortions of the octahedra (Glazer,

1972, 1975; O’Keeffe & Hyde, 1977; Megaw & Darlington,

1975; Woodward & Reaney, 2005). Glazer (1972, 1975) gave a

description of these crystals using tilt systems, describing the

rotation of the oxygen octahedra about the [100], [010] and

[001] axes. Owing to the corner connectivity of the relatively

rigid octahedra, the effect of tilting one octahedron about, say,

the [100] axis results in all others in the same (100) plane

either tilting in the same, or opposite, direction in a similar

manner to a plane of interconnected gears. This results in a

doubling of periodicity perpendicular to the tilt axis. Octa-

hedra in a given (100) plane are independent of the (100)

planes above and below, and so can either tilt the same sense

(in phase) or the opposite sense (anti-phase). In the Glazer

notation tilts about the three principal axes are described by a

letter, followed by a superscript indicating in-phase (+) or

anti-phase (�) tilting. For example, a�b�c+ describes a tilt

system in which the tilts about all three axes are of different

magnitudes, those about [100] and [010] being anti-phase and

that about [001] being in-phase. The possible combinations of

tilts of different magnitudes about the three different axes and

the resulting space-group symmetries were described by

Glazer (1972, 1975), and considered within the framework of

Figure 1
Schematic of the perovskite structure, showing the A cations (purple), B
cations (green) and oxygen (black). The oxygen octahedron centred on
the B cation is highlighted, as well as three adjacent octahedra which are
connected at their corners.



group theory by Aleksandrov (1976) and Howard & Stokes

(1998).

Here we present a new mathematical framework which can

be used to describe distorted perovskites, and consider in

particular the implications of group-theoretical analysis for

the structure of planar defects in these materials. Rather than

consider the distortions to take the form of rotations, we

proceed directly to a deformation tensor approach which has

the advantage of mathematical simplicity as well as compat-

ibility with the standard forms of writing symmetry operations.

The two approaches – tilts and deformations – give equivalent

results, and here we maintain the terminology of octahedral

tilting within the framework of our more general approach.

From a group-theoretical analysis of the symmetry of

different tilt systems we proceed to examine the local

symmetries which exist at planar defects – particularly anti-

phase boundaries and domain walls (twins) – in tilted

perovskites. The orientation of low-energy twins has been

considered by several workers, using lattice matching across

interfaces (Zheludev & Shuvalov, 1957; Fousek & Janovec,

1969; Sapriel, 1975), energy mimimization (Shu & Bhatta-

charya, 2001) and theories of mechanical twinning (Cahn,

1959). However, the effect of octahedral tilts on the local

structure of such defects does not seem to have been exam-

ined in a systematic way, and is the main purpose of this work.

We find that if corner connectivity is maintained, only a few

allowed symmetries are possible at the planar defects, which

are in general different from the parent space group. We

propose that this also gives rise to regions adjacent to the

defect which have an intermediate structure, acting as a bridge

between the defect structure and the bulk.

2. Space groups of tilted perovskites

2.1. Deformation tensor description of octahedral tilts

An undistorted oxygen octahedron is shown in Fig. 2. We

take the origin of the coordinate system to be at its centre; any

distortion of the octahedron can be described by considering

the vectors x1 to x6, which give the positions of the O atoms at

the corners of the octahedron in this reference frame. A

completely general distortion would require a change in

position of all six O atoms, but for simplicity, and to maintain

the link to the description in terms of octahedral tilts, we

restrict ourselves here to distortions which maintain a centre

of symmetry. The octahedron can thus be completely

described by the vectors x1, x2 and x3. The distortion of the

octahedron can be described using a second-rank deformation

tensor, i.e.

D ¼

�!11=!1 �!21=!2 �!31=!3

�!12=!1 �!22=!2 �!32=!3

�!13=!1 �!32=!2 �!33=!3

2
4

3
5: ð1Þ

This can also be written as a transformation matrix Tusing D =

T � I, where I is the identity matrix (i.e. the same information

in a different form, since subtraction of the identity element

does not change the information contained in the matrix). To

describe the distortion of the octahedron using tilts, rotations

of � about [100], � about [010] and � about [001] can be used,

given by the transformation matrices A, B and C:

A ¼

1 0 0

0 cos� sin �

0 � sin � cos�

2
64

3
75;

B ¼

cos� 0 � sin �

0 1 0

sin � 0 cos �

2
64

3
75;

C ¼

cos � sin � 0

� sin � cos � 0

0 0 1

2
64

3
75: ð2Þ

We may now apply these three rotations to describe the

distorted octahedron. However, as noted by Glazer (1972) the

final tilt arrangement depends upon the order in which the tilt

operations are carried out. This problem can be overcome if

the tilts are considered to act about a single axis, e.g. a+a+a+

should be described by a rotation about [111] (O’Keeffe &

Hyde, 1977). Alternatively, the final configuration can be

obtained by applying the tilts about the three h100i axes

incrementally (Woodward, 1997). In both cases, the end result

has the same form as a linear sum of the three tilts A, B and C,

i.e. the off-diagonal elements of the matrix are antisymmetric.

These issues do not arise using the deformation tensor

description, since the distortion of the oxygen octahedron is

considered in its actual form through (1) without the need to

consider subsidiary operations. The use of tilt systems is a very

helpful mental construct but the oxygen octahedra do not

actually rotate; the atoms simply are displaced from their

nominal sites in a coordinated manner. Here we assume that D

is always a sum of two components, a diagonal matrix

(describing a strain) and an antisymmetric matrix (describing

a pure shear). For example, for a tilt about the [001] axis
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Figure 2
Deformation of a regular oxygen octahedron, described by three vectors
xi and the deformations dxij .



D ¼ T� I ¼ Dcell þDocto ¼

cos � � 1 0 0

0 cos � � 1 0

0 0 0

2
64

3
75

þ

0 c 0

�c 0 0

0 0 0

2
64

3
75; ð3Þ

where c = sin �. In the case of centrosymmetric deformations,

all O atoms lie on planes midway between the centres of

adjacent octahedra. Thus the symmetric part of D, Dcell,

describes changes in the unit-cell dimensions, while the anti-

symmetric Docto describes changes in the oxygen octahedron.

The latter part, Docto, is of most importance in determining

space-group symmetry, and for (linearly summed) rotations

about all three [100], [010] and [001] axes is

Docto ¼

0 c �b

�c 0 a

b �a 0

2
4

3
5: ð4Þ

Equation (4) describes the three tilts about the three different

axes as independent pure shears a, b and c. It is thus possible

to describe the effect of tilts by taking just these three

components to form a ‘tilt vector’ t, given by

t ¼ a b c
� �

; ð5Þ

which describes the magnitude and sense of tilts about the

[100], [010] and [001] axes for the octahedron at the origin of

the coordinate system shown in Fig. 2. We note that the

crystallographic axes have twice the length of the !i axes

shown in Fig. 2, i.e. the O atoms lie at 1
2[100], 1

2[010] and 1
2[001].

2.2. The effect of corner connectivity

The O atoms at the corners of the octahedron shown in Fig.

2 are shared with adjacent octahedra. The displacements of

these atoms are thus also part of the deformation tensors

describing adjacent octahedra; this is simply a mathematical

description of the ‘interconnected gear wheel’ effect of tilts

across a plane perpendicular to the tilt axis. Assuming these

deformations to also be centrosymmetric, the deformation of

an octahedron at any position v can be described by a tilt

vector tv.

In materials described only by ‘in-phase’ or ‘anti-phase’

tilting, only two tilt vectors need to be specified to describe the

deformations of all octahedra, corresponding to the octahe-

dron at the origin and a second at [111]. We take the tilt of the

octahedron at position v = [000] to be given by t[000] = [a1, b1,

c1] and that at v = [111] to be given by t[111] = [a2, b2, c2]. It is

thus convenient to define a six-vector s = [t[000]: t[111]]. Tilt

systems can be described by the vector s, e.g. a0a0c+ is

described by s = [0, 0, c: 0, 0, c], a0b+c� is described by s = [0, b,

c: 0, b, �c] etc. We note that a different six-vector repre-

sentation was used by Howard & Stokes (1998), in which the

different elements represented in-phase or anti-phase tilts.

In order to obtain the tilts of an octahedron at a general

position v = [v1 v2 v3], we first note that the tilts of two octa-

hedra separated by [2u 2v 2w], where u, v, w are integers, are

the same. Thus, in calculating octahedral tilts a general posi-

tion vector v can be reduced to v mod(2), where each vi is

modulo 2, e.g. [4 5 �1] mod(2) = [011]. We now define a

compound operator Q = (Q|q), composed of a matrix

(operator) Q and vector q, which can be operated upon the

location vector {v mod(2)} to obtain the tilt vector tv,

Q ¼

a1 þ a2 0 0

0 b1 þ b2 0

0 0 c1 þ c2

2
64

3
75 �1ð Þv�½111�þ1;

q ¼

a1

b1

c1

2
64

3
75 �1ð Þv�½111�: ð6Þ

This compound operator uses the familiar Seitz notation

(Seitz, 1936) used to describe symmetry operations S = (S|s)

(Hahn, 2006) and obeys similar multiplication rules, i.e. QS =

(Q|q)�(S|s) = (QS|Qs + q). In this notation, the position vector

takes the form V = (I|{v mod(2)}), where I is the identity

operator. Using (6) we find that the tilts of the octahedron tv at

a general position v are given by

ðQjtvÞ ¼ QV ¼ ðQjQfv modð2Þg þ qÞ; ð7Þ

or, more simply, just taking the vector part of (7),

tv ¼ Qfv modð2Þg þ q: ð8Þ

The operator Q = (Q|q) is derived by taking the tilt at v =

[000] to form q, while changing the sign of tilts using (�1)v�[111]

and replacing those tilts appropriately with those at v = [111]

using Q, dependent upon v. There are eight unique tilt vectors

in the doubled unit cell given by the vectors v mod(2) = [000],

[001], [010], [011], [100], [101], [110] and [111]. For example,

the octahedron at v = [100] has tilts given by t[100] = [a2, �b1,

�c1].

2.3. Compatibility of tilts with symmetry operations

The tilts considered in xx2.1 and 2.2 represent the most

general tilt set, in which there is no relation between the

magnitude or sign of any of the components a1, b1, c1, a2, b2

and c2. Any symmetry operation which relates the different

octahedra will produce constraints on the relative sign and

sense of tilts. This can be described by writing (7) in a new

reference frame given by the application of the symmetry

operator, i.e. replacing QV with SQS�1V. Thus, the application

of a symmetry operator S = (S|s) of the prototype cubic

spacegroup �cubic changes the tilt vector of the octahedron at

position v to t0v, where

t0v ¼ ðSQ½fS�1
� ðv� sÞgmodð2Þ� þ SqÞjSj; ð9Þ

where the determinant |S| has been introduced to take account

of the change of sign produced by an improper operation such

as a mirror or inversion operator, and the modulo (2) opera-

tion is now performed at the displaced origin. In doing this it is

also necessary to modify Q to take account of the change of
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origin produced by the translation part s, so that Q is now

given by

Q ¼

a1 þ a2 0 0

0 b1 þ b2 0

0 0 c1 þ c2

2
64

3
75 �1ð Þ vþsð Þ�½111�þ1;

q ¼

a1

b1

c1

2
64

3
75 �1ð Þ vþsð Þ�½111�: ð10Þ

This general form of Q and (9) reduce to that given in (6) and

(8) when S is the identity operator, i.e. S = (I|0). Now, if the

operator S is in the space group of the crystal (i.e. S 2�crystal)

then the tilt vector of every octahedron after the application of

S must be the same as that in the original crystal, i.e.

t0v ¼ tv; 8 v modð2Þ: ð11Þ

In practice, since the tilts are completely described by v =

[000] and v = [111], the compatibility of a symmetry operation

with a given tilt system can be expressed using the six-vector s
= [t[000]: t[111]], i.e.

If S 2 �crystal; then s0 ¼ s: ð12Þ

For example, the (011) mirror-glide plane given by S =

(myz|[100]) gives

s0 ¼ ½�a2;�c1;�b1 : �a1;�c2;�b2�

¼ ½a1; b1; c1 : a2; b2; c2� ¼ s; ð13Þ

and this equation is only consistent with tilts which have the

form [a, b1, �b1: �a, b2, �b2], i.e. this symmetry operation can

only exist in crystals with tilt systems a�b+b+ or a�b�b� (and

equivalent tilt systems in which one or more tilts are zero, i.e.

a0b+b+, a0b�b�, a�b0b0 and a0a0a0).

2.4. Space-group symmetry of tilted perovskites

The space group of a perovskite with a given tilt system is a

subgroup of the prototype space group Pm�33m. The group–

subgroup relations between the different tilt systems were

given by Howard & Stokes (1998). The number of different

orientational variants for any given subgroup is given by the

ratio of the order of the point groups; for example, the tilt

system a0b+b+ has point symmetry 4/mmm (order 16) and

there are three orientational variants which are subgroups of

m�33m (order 48). The number of space-group variants for each

tilt system is, in general, smaller than the number of orienta-

tional variants (Aizu, 1979) – for example a�b�c� has point

symmetry 1 (order 2) with 24 orientational variants; however,

all of these orientational variants have the same space group

P1, i.e. there is only one space-group variant. In the frame-

work described here, it is a simple matter to obtain the

elements which are compatible with a given space-group

variant of a given tilt system by application of equation (12) to

all elements in Pm�33m, selecting only those which are

compatible with the six-vector describing the space-group

variant of the tilt system. Application of this process to the 23

different tilt systems identified by Glazer (1972) reproduces

the 15 space groups obtained by Howard & Stokes (1998).

Examples for the symmetry elements (I|s), (mz|s) and (mxz|s)

are given in the supplementary material,1 which lists each tilt

system, the different space-group variants for each, and

compatibility with the given symmetry element for all unique

values of the translation part s. Table S1 of the supplementary

material, with S = (I|s), gives the translation group of the

crystal, which is of importance in determining the local

symmetry at a defect in x3. We note that the assumption that

the deformation of the octahedra is centrosymmetric leads to

an equivalence between elements related by the inversion

operator, (e.g. mirrors and twofold axes) and thus the final

space groups are also all centrosymmetric.

3. Local symmetry of planar defects in tilted perovskites

3.1. Definition of a bicrystal and the defect character of an
interface

Although the framework outlined in x2 allows the space

group of any given tilt system to be obtained, our main interest

here is the nature of ‘local’ symmetry at any given planar

defect in a tilted perovskite oxide. As noted by Pond &

Vlachavas (1983), when symmetrically equivalent structures

exist which are related by a broken symmetry element W, the

defect which lies between them can be characterized by the

element W. Here, we call W the characteristic symmetry

operator of the defect. This is perhaps most familiar in the case

of crystal dislocations, which can be considered to be formed

by local breaking of the translation symmetry of the crystal,

and are characterized by a translation which is part of the

crystal space group, known as the Burgers vector b. In tilted

perovskite oxides, the different orientational variants (known

as domains) are related by the broken symmetry elements

which exist in the prototype group Pm�33m but not in the crystal

space group. Many of these characteristic symmetry operators

describe planar defects (i.e. domain walls) rather than line

defects (dislocations).

Here, we formally describe the formation of a planar defect

(Pond & Vlachavas, 1983) by defining an interfacial plane with

unit normal n passing through the origin of the coordinate

system in an infinite crystal which we call the ‘white’ or �
crystal with space group ��. A second, interpenetrating,

crystal (which we call the ‘black’ or � crystal) is produced by

applying a symmetry operator W with space group ��. Finally

atoms in the � crystal are removed from one side of the

interfacial plane and atoms in the � crystal are removed from

the other, giving a bicrystal in which the � and � crystals are

related by the operator W. Obviously, if W is an element of the

� crystal space group ��, the crystal continuity will be main-

tained across the interfacial plane and it will have no defect

character. Conversely, if W describes a planar defect, the

octahedral tilts on either side of the interfacial plane cannot

match by definition, since the characteristic symmetry
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operator W is not an element of the crystal space groups �� or

��. Therefore, if continuity of oxygen octahedra is maintained

the local symmetry at the defect must have a different struc-

ture to that of the bulk. Furthermore, it is also clear that the

local structure at the defect must have a form compatible with

the characteristic symmetry operation W. This is a key obser-

vation of this paper and the consequences of this are examined

in more detail below. In the following we assume that the

deformation of the unit cell, Dcell, is dependent upon the

octahedral deformation Docto, e.g. if the continuity of the

oxygen octahedra requires all tilts to be zero (a0a0a0) the

lattice will be locally cubic (Dcell = 0). This condition does not

have to be satisfied to maintain continuity, but it allows us to

maintain a straightforward description of the crystal

symmetry.

3.2. Compatibility of local and bulk symmetries

When a symmetry operation W = (W|w) is used to describe

a planar defect, the operator part W describes the type of

defect [e.g. W = myz describes an (011) twin]. The component

of w perpendicular to the interface, (w � n)n, gives the

displacement of the interface from the origin at the centre of

the oxygen octahedron, while that parallel to the interface

describes a rigid-body shift of the � crystal with respect to the

� crystal. Thus, the operator W = (myz|0) describes an (011)

twin which passes through the origin; W = (myz|[011])

describes a twin displaced from the origin, and W = (myz|[100])

describes a combination of a twin and a rigid-body shift w =

[100] in the (011) interfacial plane.

Tables S1–S3 of the supplementary material, as well as

listing whether the symmetry elements are compatible with

any given space-group variant, thus also describe planar

defects described by translations [i.e. anti-phase boundaries

(APBs), Table S1] and twins [on the (011) plane, Table S2; on

the (001) plane, Table S3]. It can be seen that each symmetry

operator W is compatible with a set of tilt systems, �(W); for

example, the element W = (myz|[100]) is listed in the fourth

column of Table S3 and is only found in eight different tilt

systems (and variants thereof), i.e.

�ðmyzj½100�Þ ¼ fa0a0a0; a�b0b0; a0b�b�; a0bþbþ;

a�a�a�; a�b�b�; aþaþa�; aþaþc�g: ð14Þ

Thus, if oxygen octahedra are continuous across an inter-

face, no matter what the bulk structure, the local structure at a

domain wall characterized by an (011) twin and a shift of [100]

must be one of those given by (14). Nevertheless, in any given

bulk structure only a subset of these tilt systems is compatible

with a planar defect characterized by W. A translation of the �
(or �) crystal by a vector which is a member of the space

group �� (or ��) must, by definition, leave the structure of

the interface unchanged. Thus, only those tilt systems which

are also found in all sets of symmetry operations �(W|w + u),

where u is a lattice translation vector in �� or ��, can char-

acterize planar defects. In other words, the translation group

of the local defect symmetry must contain the translation

groups of both the � and � crystals. The set of tilt systems

�(W) which are compatible with a given planar defect in a

given crystal structure is thus

�ðWÞ ¼ �ðWjwÞ \ �ðWjwþ u1Þ \ �ðWjwþ u2Þ \ . . . ; ð15Þ

where the ui are translation vectors of the � and � crystals. In

the case of a twin characterized by W = (myz|[100]) in an

a�a�a� system, both �� and �� only contain the translation

elements s = [000], [110], [101] and [011] (Table S1 of the

supplementary material). This leads to the rejection of a0b+b+,

a+a+a� and a+a+c�, since their translation groups do not

contain these elements (Table S1), giving the set of tilt systems

compatible with W = (myz|[100]) in an a�a�a� system to be

�ðmyzj½100�Þ ¼ fa0a0a0; a�b0b0; a0b�b�; a�a�a�; a�b�b�g:

ð16Þ

However, this principle can be broken when the interfacial

plane lies parallel to {100} and w = [100], normal to the

interfacial plane. In this case the interface lies perpendicular

to a tilt axis and adjacent layers of octahedra can tilt inde-

pendently; w describes the position of the interfacial plane

rather than a rigid-body shift of the � crystal with respect to

the � crystal, and local symmetries can be given by tilt systems

in �(W) rather than �(W).

Tables S1–S3 of the supplementary material show that a rich

variety of local symmetries is possible for APBs and twins in

tilted perovskites, and that for any given case there are often

several different tilt systems �(W) which are compatible with

the characteristic symmetry operator W. In any given case the

structure which will form in a real crystal will have the lowest

free energy, which cannot be determined by symmetry alone.

Furthermore, a gradual transition from one tilt system to the

other may be expected across the interface and in the general

case this intermediate structure may have yet another

symmetry and energy, different from both the defect itself and

the bulk.

Although the structure in any given case must be given by

energy considerations, it is a straightforward matter to deter-

mine which tilts will change across a planar boundary from (9).

This can be done by examining the tilt vector of the octahe-

dron at the origin, i.e. at v = [000], before (� crystal) and after

(� crystal) application of the operator W = (W|w). In the

general case

t� ¼ ½a1; b1; c1�; t� ¼ ðWQ½fW�1ð�wÞgmodð2Þ� þWqÞjWj:

ð17Þ

For example, in the R3c, a�a�a� structure s = [a, a, a:

�a, �a, �a]; at an anti-phase boundary characterized by W =

(I|[100]), t� = [a, a, a] and t� = [�a, �a, �a], indicating that all

three tilts must reverse across the boundary plane.

Taking a simplistic approach, the octahedral tilts at a defect

might be described by a tilt vector tmean which is the mean of

that on each side, i.e. tmean = (t� + t�)/2. However, it is possible

for other local symmetries to exist which are not given by this

simple approach, as will be shown in the examples below.

Here, rather than give an exhaustive list of defect types and

local symmetries in all tilt systems, we consider domain walls
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in the a�a�a� tilt system as an example. Local symmetries of

defects in other tilt systems may be obtained by following a

similar procedure.

3.3. Example: planar defects in the a�a�a� tilt system

Table 1 lists the five different planar defects that can exist in

the a�a�a� tilt system, i.e. APBs, twins on {110} and {100}

planes, and combinations of a twin and an APB. This is derived

by examination of the appropriate table for the characteristic

symmetry operator, which gives the set of allowable local tilt

systems �(W) as in (14); the smaller set of allowable local tilt

systems specific to the a�a�a� tilt system �(W) is then found

by examination of Table S1 of the supplementary material and

eliminating the tilt systems in �(W) that do not contain the �

and � translations. The characteristic

symmetry operator is given as W =

(W|w + u) to emphasize that the interfacial

structure is invariant under application of

any translation vector u in �� or ��. The tilt

vector t� is given according to (17); a nega-

tive value indicates that the sense of tilt

reverses across the boundary. The final

column gives the local tilt system given by

tmean. These different boundaries are shown

schematically in Fig. 3. For each, the figure

on the left shows a defect in which the bulk

structure is maintained up to the interfacial

plane, while on the right the network of

octahedra is continuous. In each case, the

structure which results from continuity of

the oxygen octahedra corresponds to tmean.

This indicates that the local structure at

twins in an a�a�a� structure is likely to have

tetragonal (I4/mcm) or orthorhombic

(Imma) symmetry, while that at APBs has

the cubic (Pm3m) form.

The local symmetries that can exist in the

special case of an [001] APB or twin which

is displaced from the origin (i.e. w = [001])

are given in Table 2. The extra degree of

freedom afforded by the ability of the

oxygen octahedra adjacent to the boundary

to rotate independently about [001] leads to

the tetragonal a0a0c+ structure in the case of

APBs and the orthorhombic a�a�c+ struc-

ture for (001) twins.

4. Discussion

The approach outlined in xx2 and 3 provides

a method for predicting the local symmetry

at planar defects in tilted perovskites. Since

a defect is characterized by a broken

symmetry element – which is, by definition,

not present in the crystal on either side of

the defect – the local structure of the defect

must be different to that of the bulk material if octahedral

continuity is maintained. It is also clear that rigidity of the

oxygen framework must lead to a transition region between

the defect and the bulk material on either side; this could be

considered to be an ‘intermediate’ structure which links the

two crystals. We have chosen the a�a�a� bulk structure as an

example, but this approach could be applied to any tilted

perovskite.

Despite the success of this approach, it is only a partial

description of the tilted perovskite structure. Only pure shears

of the octahedra have been considered; these are sufficient to

reproduce the space-group analysis of Glazer (1972) and

Howard & Stokes (1998), but in real materials the deforma-

tions are often more complex. In particular the loss of

centrosymmetry is usual, resulting in many of the more useful
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Table 1
Allowable planar defects (domain walls) in the a�a�a� tilt system.

This table gives their characteristic symmetry operators W and the set of compatible tilt systems
�(W). The octahedral tilt vector t� describes the tilt of an octahedron in the � crystal as equivalent
to one in the � crystal with tilt vector t� = [a, a, a], indicating which tilts must reverse across the
interface. The vector tmean gives the average of the two tilt systems at the interface.

Defect W �(W) t� tmean Local tilt system

APB (general) (I|h100i + u) a0a0a0 [�a, �a, �a] [0, 0, 0] a0a0a0 Pm�33m

Twin (011) (myz|[000] + u) a0a0a0 [�a, a, a] [0, a, a] a0b�b� Imma
a0b�b�

Twin (001) (mz|[000] + u) a0a0a0 [�a, �a, a] [0, 0, a] a0a0c� I4/mcm
a0a0c�

a�a�a0

Twin (011) + APB (myz|[100] + u) a0a0a0 [a, �a, �a] [a, 0, 0] a�a0a0 I4/mcm
a�b0b0

a0b�b�

a�a�a�

a�b�b�

Twin (001) + APB (mz|[010] + u) a0a0a0 [a, a, �a] [a, a, 0] a�a�a0 Imma
a�a0a0

a�a�a0

Table 2
Special planar defects on {001} planes displaced from the origin in the a�a�a� tilt system.

This is similar to Table 1, but with the larger set of compatible tilt systems �(W).

Defect W �(W) t� Local tilt system

APB (001), displaced from origin (I|[001]) a0a0a0 [�a, �a, �a] a0a0c+ P4/mbm
a0a0c+

Twin (001), displaced from origin (mz|[001]) a0a0a0 [a, a, �a] a�a�c+ Pnma
a�a0a0

a+a0a0

a�a�a0

a0b�c+

a0b+b+

a�a�c+

a�b�c+

a+a�c+

a+b�a+

a+b�c+

a+a+a+

a+b+c+



properties of these materials, such as ferroelectricity and

piezoelectricity. Furthermore, small deformations of the unit

cell, consistent with the space group imposed by octahedral

deformations, are common. Here we have given a description

in which Dcell is assumed to be consistent with the symmetry

dictated by octahedral tilting, although this does not have to

be the case in general.

Nevertheless, the principle of continuity of the octahedra

leads to clear predictions of local structure in x3 which can be

compared with experimental observations where available.

Furthermore, it has been known for some time that local

symmetries can be present at planar defects which do not exist

in bulk material (Salje & Zhang, 2009; Jaffe et al., 1971).

Models of local structure have been given for some systems,

although these appear to have been arrived at by inspection of

the individual cases rather than the use of group theory. The

loss of translation symmetry elements given in Table S1 of the

supplementary material gives rise to APBs in many tilt

systems; experimentally, these defects tend to have a mean-

dering structure indicating little dependence of interfacial
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Figure 3
Schematic showing local octahedral tilting at planar defects in bulk
a�a�a� material. Only one (100) plane of oxygen octahedra is
shown for clarity, and arrows indicate the tilts about the [010] and
[001] axes. (a) An anti-phase boundary (APB) on an (001) plane,
W = (I|[010]); (b) an (011) twin, W = (myz|[000]); (c) an (001) twin,
W = (mz|[000]); (d) an (011) twin + APB, W = (myz|[010]); (e) an
(001) twin + APB, W = (mz|[010]). For each, the structure on the
left maintains the a�a�a� structure up to the interface, while that
on the right maintains continuity of the oxygen octahedra. The
local symmetry at the defects corresponds to that shown in Table 1.
Indicated axes show the prototype unit cell; the octahedron at the
origin has tilts t� = [a, a, a].



energy upon crystallographic orientation (Glazer, 1972; Cheng

et al., 2006; Ding & Liang, 2002; Liang et al., 2003; Chen et al.,

2001; Lebedev et al., 1998). This implies that the local structure

is usually of the a0a0a0 form rather than a0a0c+, since the latter

would lead to strong {001} faceting of APBs. Chen et al. (2001)

discussed the effect of APBs on colossal magnetoresistance in

La1�xCaxMnO3, giving a model of distorted octahedra at the

defect in this a+b�b� structure. Similarly, Ding & Liang (2002)

and Liang et al. (2003) noted that local distortions are required

for continuity of oxygen octahedra at APBs in layered

perovskites and La2/3Ca1/3MnO3. In the latter study, high-

resolution transmission electron microscope (HRTEM)

images showed APBs to have a finite width, and their images

are consistent with an a0a0a0 local structure. In the

Na0.5Bi0.5TiO3 a�a�a� system, Dorcet and co-workers (Dorcet

& Trolliard, 2008; Dorcet et al., 2008, 2009) proposed a model

of (100) twins which corresponds to the W = (mz|[001]) defect

in the system used here (Fig. 4b, Table 2).

It has also been noted that interactions between different

planar defects occur. For example, Ricote et al. (2000) noted

reduced mobility of {011} domain walls in R3c a�a�a�

PbZrxTi1�xO3, and similarly Eitel & Randall (2007) noted

interactions between APBs and {011} twins in PbZr0.3Ti0.7O3,

leading to pinning of domain walls and changes in macroscopic

parameters such as the Rayleigh slope parameter as the

material transformed from untilted R3m to the R3c a�a�a�

structure. Here, this can be understood by the different

structures of the (011) twin (with a0b�b� tilts) and the (011)

twin + APB (with a�a0a0 tilts).

Finally, the additional condition of octahedral continuity

may have implications for the understanding of morphotropic

phase boundaries (Viehland, 2000a; Jin et al., 2003a,b; Ahart et

al., 2008), where domain sizes can shrink to sizes of a few

nanometres or less (Schmitt et al., 2007; Schönau et al., 2007).

The different structures which must exist at defects, as well as

the intermediate structure between them and bulk material,

may be apparent as a change of global symmetry of the

material in a similar manner to, or in addition to, adaptive

phases (Viehland, 2000b; Jin et al., 2003a,b).

5. Conclusion

We have presented a new mathematical framework which can

be used to describe the structure of tilted perovskites, using a

deformation tensor description of the oxygen octahedra and

an operator Q which describes connectivity between adjacent

octahedra. This allows the space-group symmetry of tilted

perovskites to be derived and reproduces that of Howard &

Stokes (1998). Here, we have used this framework to examine

the structure of planar defects in tilted perovskites. We find

that the condition of continuity of oxygen octahedra across a

planar defect leads to restrictions on the local structure at the

boundary, giving a set of allowed tilt systems which are

necessarily different from the bulk structure. We have

considered the rhombohedral R3c a�a�a� structure as an

example, and find that APBs on general planes have a0a0a0

tilts while those on particular (001) planes can have a0a0c+ tilts.

A twin (domain wall) lying on an (011) plane has a0b�b� tilts,

while a combination of an (011) twin + APB has a�a0a0 tilts.

Twins on (001) planes have a0a0c� or a�a�c+ tilts, and an (001)

twin + APB has a�a�a0 tilts. The implications for interactions
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between different types of planar defect and domain wall

pinning have been briefly discussed.
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References

Ahart, M., Somayazulu, M., Cohen, R. E., Ganesh, P., Dera, P., Mao,
H.-K., Hemley, R. J., Ren, Y., Liermann, P. & Wu, Z. (2008). Nature
(London), 451, 545–548.

Aizu, K. (1979). J. Phys. Soc. Jpn, 46, 1716.
Aleksandrov, K. S. (1976). Ferroelectrics, 14, 801–805.
Cahn, R. W. (1959). Adv. Phys. 3, 363–445.
Chen, Q., Tao, J., Zuo, J. M. & Spence, J. C. H. (2001). J. Mater. Res.

16, 2959–2965.
Cheng, S.-Y., Ho, N.-J. & Lu, H.-Y. (2006). J. Am. Ceram. Soc. 89,

3498–3506.

Damjanovic, D. (1998). Rep. Prog. Phys.
61, 1267–1324.

Ding, Y. & Liang, D. D. (2002). J. Appl.
Phys. 92, 5425–5428.

Dorcet, V., Marchet, P., Pena, O. &
Trolliard, G. (2009). J. Magn. Magn.
Mater. 321, 1762–1766.

Dorcet, V. & Trolliard, G. (2008). Acta
Mater. 56, 1753–1761.

Dorcet, V., Trolliard, G. & Boullay, P.
(2008). Chem. Mater. 20, 5061–5073.

Eitel, R. & Randall, C. A. (2007). Phys.
Rev. B, 75, 094106.

Fousek, J. & Janovec, V. (1969). J. Appl.
Phys. 40, 135–142.

Glazer, A. M. (1972). Acta Cryst. B28,
3384–3392.

Glazer, A. M. (1975). Acta Cryst. A31,
756–762.

Hahn, Th. (2006). Editor. International
Tables for Crystallography, Volume
A, Space-Group Symmetry, 1st online
ed. Chester: International Union of
Crystallography.

Howard, C. J. & Stokes, H. T. (1998).
Acta Cryst. B54, 782–789.

Jaffe, B., Cook, W. R. & Jaffe, H. (1971).
Piezoelectric Ceramics. London:
Academic Press.

Jin, Y. M., Wang, Y. U., Khachaturyan,
A. G., Li, J. F. & Viehland, D. (2003a).
J. Appl. Phys. 94, 3629–3640.

Jin, Y. M., Wang, Y. U., Khachaturyan,
A. G., Li, J. F. & Viehland, D. (2003b).
Phys. Rev. Lett. 91, 197601.

Lebedev, O. I., Van Tendeloo, G.,
Amelinckx, S., Leibold, B. & Haber-
meier, H. U. (1998). Phys. Rev. B, 58,
8065.

Liang, D. D., Lei, C. H., Xu, Q. Y. & Ding, Y. (2003). Philos. Mag. 83,
2915–2927.

Lines, M. E. & Glass, A. M. (1979). Principles and Applications of
Ferroelectrics and Related Materials. Oxford: Clarendon.

Megaw, H. D. & Darlington, C. N. W. (1975). Acta Cryst. A31, 161–
173.

O’Keeffe, M. & Hyde, B. G. (1977). Acta Cryst. B33, 3802–3813.
Pond, R. C. & Vlachavas, D. S. (1983). Proc. R. Soc. London Ser. A,

386, 95–143.
Ricote, J., Whatmore, R. W. & Barber, D. J. (2000). J. Phys. Condens.

Matter, 12, 323–337.
Salje, E. & Zhang, H. (2009). Phase Transit. 82, 452–469.
Sapriel, J. (1975). Phys. Rev. B, 12, 5128–5140.
Schmitt, L. A., Schonau, K. A., Theissmann, R., Fuess, H., Kungl, H.

& Hoffmann, M. J. (2007). J. Appl. Phys. 101, 074107.
Schönau, K. A., Schmitt, L. A., Knapp, M., Fuess, H., Eichel, R. A.,

Kungl, H. & Hoffmann, M. J. (2007). Phys. Rev. B, 75, 184117.
Seitz, F. (1936). Ann. Math. Stat. 37, 17–26.
Shu, Y. C. & Bhattacharya, K. (2001). Philos. Mag. B, 81, 2021–2054.
Viehland, D. (2000a). J. Appl. Phys. 88, 4794–4806.
Viehland, D. (2000b). J. Appl. Phys. 88, 4794–4806.
Woodward, D. I. & Reaney, I. M. (2005). Acta Cryst. B61, 387–399.
Woodward, P. M. (1997). J. Appl. Cryst. 30, 206–207.
Zheludev, I. S. & Shuvalov, L. A. (1957). Kristallografiya, 1, 681–688.

Acta Cryst. (2011). A67, 191–199 Richard Beanland � Planar defects in tilted perovskites 199

research papers

Figure 4
Schematic showing local octahedral tilting at (001) planar defects in a�a�a�material which pass through
the corners of the octahedra. Only one (100) plane of oxygen octahedra is shown for clarity. (a) An APB,
W = (I|[001]); (b) a twin W = (mz|[001]). The structure on the left maintains the a�a�a� structure up to
the interface. The structure on the right maintains continuity of the oxygen octahedra; the local
symmetry is (a) a0a0c+ and (b) a�a�c+. Arrows indicate the tilts about the [010] and [001] axes.
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